
SCTP daemons' User Application Guidelines :
Using the sctpdlib

Sim Woon Chiat,
ICM N PG U SE D2

Siemens AG

1. Introduction

This document describes how to make use of the daemon and how to program a User
Application (UA) that makes use of the daemon.

2. Rationale

The main rationale of having a daemon for the SCTP library is due to the fact that there
cannot be more than one instance of the SCTP library running on a host machine. Hence,
an intermediary is needed to allow multiple processes to use the services provided by the
SCTP library. The daemon ‘multiplexes’ the function calls from all the UAs, and
‘demultiplexes’ the return values from these calls to the respective UA. The daemon is
also useful for cases when the UA is a GUI-based application and needs to run its own
event loop to handle the GUI elements. Using the daemon allows the separation of the
event loop of the GUI and that of the SCTP library.

The daemon comes with its own library (which will henceforth be referred to as
sctpdlib), which provides functions that map closely to those provided by the SCTP
library. To the user UA, calling these functions produce similar results to calling those
functions provided by the SCTP library. For the notifications, the aim is to remain
compatible with the callback API defined for the SCTP library.

3. Background

3.1. Overview

The SCTP daemon and its User Applications (UAs) run in separate processes, and they
communicate through UDP messages. The messages consist of request and response pairs
as well as notifications of SCTP events from the daemon to the UAs. This document will
not go into the specifics of the format and fields of the messages that are passed between
the two entities.

Figure 1 gives an overview of what is exchanged between the two entities. It shows the
main types of messages that pass between the two.

Figure 1.: Message exchanges between the User Application and the Daemon.

The first thing that the UA needs to do is to register itself with the daemon. Certain
information (e.g. UDP ports information used by the UA) has to be passed to the daemon
to allow the latter to communicate with it subsequently. The registration itself is through
a UDP message.

After it has registered with the daemon, it can send requests to the daemon to execute
certain functions calls. These functions calls are typically those that are made to the
SCTP library. In this case, the UA makes calls to the sctpdlib, which in turns sends the
relevant UDP messages to the daemon. Upon receipt of these messages, the daemon
would call the SCTP library function on behalf of the UA.

Once the SCTP library function completes, the daemon would construct a message
containing the results of the call. The message will than be passed back to the calling UA.

Besides the request and response messages, there are notification messages that are sent
from the daemon to the UA. These notifications are mostly the SCTP events notifications
that the SCTP library raises (e.g. communication up notification), which the daemon will
send to the relevant UA.

The SCTP event notifications from the daemon are handled in the same way as those of
the SCTP library. A callback mechanism is provided and the UA is expected to provide
an event handler for each of the SCTP event that it wishes to handle. It will also need to
register these callback handlers with the sctpdlib. [See section 5.3.]

As mentioned above, the sctpdlib provides a set of functions that ‘mimic’ those provided
by the SCTP library (see sctpdlib/ua.h for the entire list). These functions take care of
building the UDP messages and hence, the UA need not concern itself with how to

Notification by SCTPd for SCTP event

UA

SCTPd

UA registration with SCTPd

UA issues a request

SCTPd’s response for request

UA deregistration with SCTPd

.

.

.

.

.

.

.
.

.
.

.
.

UDP Channel

UA issues a request

SCTPd’s response for request

construct the appropriate messages. The return messages are also converted to the return
values of these functions. In other words, the UA just need to call the functions provided
by sctpdlib as if the application was using the SCTP library and calling those functions
provided by it. For example, instead of calling,

associationID=SCTP_associate(sctpInstance,

MAXIMUM_NUMBER_OF_OUT_STREAMS,
destinationAddress, remotePort, NULL);

you now call,

associationID=sctpd_associate(sctpInstance,

MAXIMUM_NUMBER_OF_OUT_STREAMS,
destinationAddress, remotePort, NULL);

3.2. UDP Communication

This section gives an explanation of the UDP communication mechanism used.

Figure 2: UDP ports needed by a UA.

The daemon binds to a UDP port (sctpd_port) and waits for messages from UAs. The
messages that it is waiting for are of two types:

1. Administrative messages, e.g. registration messages from a new UA.
2. Function call messages, e.g. a call for sctp_receive().

Each UA needs to use two distinct UDP ports for its communication with the daemon.
These ports should be unique for each UA.

1. UA_Notif_Port: UDP port to which the daemon should send notifications of
SCTP event messages (e.g. communication up notification).

2. UA_Resp_Port: UDP port to which the daemon should send return values
(responses) of function calls (requests) made by the UA to the daemon.

Note: There is a separation of responsibility in terms of who is monitoring the two UDP
ports used by the UA. In this implementation, the sctpdlib will be monitoring the
UA_Resp_Port after the UA has made a call to it for a function call request to be sent to

User App.

(UA)

SCTP Daemon

(sctpd)

Port: sctpd_port

Port: UDP_Notif_Port

Random port

Random
port

UDP databgrams

Port: UDP_Resp_Port Random
port

the daemon. However, the responsibility of monitoring the UA_Notif_Port is that of the
UA, as it probably has its own event loop, and the arrival of notifications from the
daemon is asynchronous.

4. Running the daemon.

This section covers how to use the daemon.

4.1. Building the daemon

The daemon and sctpdlib are part of the SCTP library distribution is built as part of the
SCTP library. One point to note is that the flag –enable-sctpd must be included in the
configure command for the SCTP library in order for the daemon and the sctpdlib to be
built. In other words, type:

 ./configure –enable-sctpd

as part of the configuration and build process for the SCTP library.

4.2. Configuration

The configuration file sctpd.conf can be edited with basic configuration options, which
will be loaded upon start-up of the daemon. Currently, it allows only two configuration
options.

An example of the file:

MAX_UA=10
MAX_ASSOC=50

MAX_UA: Maximum number of User Applications that this daemon is to support.
MAX_ASSOC: Maximum number of associations that this daemon is to support.

4.3. Starting the daemon.

The daemon can be started in the directory sctpd/ by:

 ./sctpd

Note: The daemon must be started as root.

5. Using the SCTP Daemon Library

This section describes what are the steps a UA is required to perform in order to use the
daemon. The example program daytime_simple.c is used to illustrate the concepts.

5.1. Header File

The UA must include the header file ua.h provided by the library. This header file
defines all the functions that are available to the UA through which the functionality of
the daemon can be accessed.

5.2. Initializing the sctpdlib

In order to begin using the daemon, the UA must initialize the sctpdlib. This is done
through the call

sctpd_initLibrary (UDP_Notif_Port, UDP_Resp_Port);

The UDP_Notif_Port is the port to which the daemon should send notifications to, and
the UDP_Resp_Port is the port the library should use to receive responses from the
daemon for the requests it sends out (see section 3.2.). The initialization will register the
UA with the daemon, informing it of the port numbers that the UA is using. After the
registration, the UA can send requests to the daemon, but not yet receive any notifications
from the daemon. As per the SCTP library, an application needs to register an instance
with the sctpdlib before any notifications will be sent.

5.3. Registering an Instance

In parallel to how an application, which uses the SCTP library, needs to register an
instance with the library, so a UA must register an instance with the sctpdlib. This is
done with a call to sctpd_registerInstance (). The parameters are the same as those
which is provided to sctp_registerInstance() in the SCTP library, except for the last
parameter which is of type UDP_UA_CB (defined in the sctpdlib) instead of type
SCTP_ulpCallbacks. Besides other information, the data structure UDP_UA_CB holds
the pointers to the callback functions that the UA wished to be called upon the arrival of
notifications from the daemon, so it is used identically as SCTP_ulpCallbacks.

In the daytime_simple.c example,

UDP_UA_CB udp_callbacks;

/* Register the UDP callbacks with the dispatch mechanism */
udp_callbacks.communicationUpNotif = &communicationUpNotif;
udp_callbacks.shutdownCompleteNotif = &shutdownCompleteNotif;
udp_callbacks.networkStatusChangeNotif = &networkStatusChangeNotif;

The example is only interested in the communication up, shutdown and network status
change events. Hence, it defined three event-handling functions and assigned them to a
data structure UDP_UA_CB. Note that these are the same steps taken when using the
SCTP library.

5.4. Listening for notifications from the daemon

There are two ways in which the UA can deal with the notifications from the daemon.

5.4.1. Using sctpd_eventLoop()

The sctpdlib provides a function, sctpd_eventLoop() that listens on the specified
UDP_Notif_Port for incoming notifications from the daemon. It will call a dispatch
function in the sctpdlib to call the appropriate user-registered callback functions. This is
very similar to using the sctp_eventLoop() function provided by the SCTP library.

5.4.2. Using a custom event loop.

For some applications, there is more than one source of input, e.g. a GUI-based program.
For such a case, the UA can use its own event loop and it is the UA’s responsibility to
listen for UDP data arriving on UDP_Notif_Port.

When UDP data arrives on the port, it should be read and passed to the dispatch function
(dispatchUAMesg()) provided by sctpdlib. This function parses the data into a message
data structure used by the sctpdlib, and calls the appropriate user-registered callback
functions provided by the UA.

In the case of the sctpdaytime program (source code is in daytime.c), the gdk event loop
is used to monitor the arrival of UDP data and a callback function is registered with the
gdk event loop for the event that UDP data has arrived for it:

gdk_input_add(udpfd,GDK_INPUT_READ,udp_recv_callback,NULL);

where udpfd is the file descriptor of the socket bound to the UDP_Notif_Port, and
udp_recv_callback is the UA-defined routine to be called upon the arrival of UDP data.
In daytime.c :

void udp_recv_callback (gpointer data,gint source,GdkInputCondition
condition) {

 char recvbuff[256];
 socklen_t len;
 struct sockaddr_in taddr;
 ssize_t mesglen;

 mesglen = recvfrom(source,recvbuff,sizeof(recvbuff),0,(struct
sockaddr *) &taddr,&len);
 if (mesglen>0) {
 /* call the dispatcher provided by sctpdlib which will
 call the registered UDP callback functions. */
 dispatchUAMesg(recvbuff);
 }
}

Notice that the function dispatchUAMesg(recvbuff) provided by the sctpdlib is called
within the callback function. This passes the received UDP data to the dispatch function
for processing. By examining the received UDP data, the respective callback functions
that the UA has registered with the sctpdlib will be called.

5.5. Using the functions provided by the sctpdlib

As mentioned, the ua.h header file defines all the function calls that the library provides
to the UA to send messages to the daemon. These functions are very similar to those
provided by the SCTP library. Any differences will be commented in ua.h.

5.6. Heartbeats

Since the daemon and the UAs are loosely bound, there needs to be a mechanism through
which the daemon may detect the abnormal termination of the UA without a proper
deregistration (e.g. when a UA dies unexpectedly). This is necessary so that the daemon
can maintain a clean state and continue to run stably.

The mechanism chosen is that of a heartbeat mechanism. This mechanism requires no
action of the part of the UA and is wholly contained within the sctpdlib.

Periodically, the daemon will send out heartbeat messages to the UAs that are registered
with it, and it expects these UAs to respond with acknowledgments. A callback in the
library provides these acknowledgements. If no acknowledgements are received before
timeout, the state of the UA will be cleared within the daemon, and all outstanding
associations that the daemon has on behalf of the offending UA will be shut down.

6. Using the example programs.

A set of example programs has been provided with the sctpdlib under the directory
sctpd_programs/. All the test programs need not be started as root.

6.1. daytime_simple

This is a simple non-graphical daytime server. It provides the current system day and
time to any SCTP client that connects to it. It is started by:

./daytime_simple –s <source IP address> ...

6.2. sctpd_echo_tool

This is the echo tool from the SCTP library, converted to using the daemon. Use it as you
would the original.

6.3. sctpdaytime_server

This is a simple graphical daytime server. It provides the current system day and time to
any SCTP client that connects to it. It is started by:

./sctpdaytime_server –s <source IP address> ...

6.4. sctpd_terminal

This is a graphical terminal program that allows the user to connect to a remote SCTP
server. It is started by:

./sctpd_terminal –s <source IP address> ...

6.5. echo_server_monitor

This is an echo_server with basic monitoring capabilities. It monitors the association and
path information and provides notifications if any paths go inactive. It is started by:

./echo_server_monitor –s <source IP address> ...

